Regular Subalgebras of Complete Boolean Algebras

نویسندگان

  • Aleksander Blaszczyk
  • Saharon Shelah
چکیده

It is proved that the following conditions are equivalent: (a) there exists a complete, atomless, σ–centered Boolean algebra, which does not contain any regular, atomless, countable subalgebra, (b) there exists a nowhere dense ultrafilter on ω. Therefore the existence of such algebras is undecidable in ZFC. In ”forcing language” condition (a) says that there exists a non– trivial σ–centered forcing not adding Cohen reals A subalgebra B of a Boolean algebra A is called regular whenever for every X ⊆ B, supB X = 1 implies supA X = 1; see e.g. Heindorf and Shapiro [6]. Clearly, every dense subalgebra is regular. Although every complete Boolean algebra contains a free Boolean algebra of the same size (see the Balcar-Franek Theorem; [2]), not always such an embedding is regular. For instance, if B is a measure algebra, then it contains a free subalgebra of the same cardinality as B, but B cannot contain any infinite free Boolean algebra as a regular subalgebra. Indeed, measure algebras are weakly σ-distributive but free Boolean algebras are not, and a regular subalgebra of a weakly σ-distributive one is again σ-distributive. Thus B does not contain any free Boolean algebra. On the other hand, measure algebras are not σ-centered. So, a natural question arises whether there exists a σ-centered, complete, atomless Boolean algebra B without regular free subalgebras. Since countable atomless Boolean algebras are free and every free Boolean algebra contains a countable regular free subalgebra, it is enough to ask whether B contains a countable regular subalgebra. In the paper we prove that such an algebra exists iff there exists a nowhere dense ultrafilter. The research of the second author was partially supported by the Basic Research Foundation of the Israel Academy of Sciences and Humanities. This publication has Number 640 in S. Shelah’s list. February 28, 1998 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A representation theorem for Boolean contact algebras

We prove a representation theorem for Boolean contact algebras which implies that the axioms for the Region Connection Calculus [20] (RCC) are complete for the class of subalgebras of the algebras of regular closed sets of weakly regular connected T1 spaces.

متن کامل

1 5 D ec 1 99 7 REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS

There is shown that there exists a complete, atomless, σ-centered Boolean algebra, which does not contain any regular countable subalgebra if and only if there exist a nowhere dense ultrafilter. Therefore the existence of such algebras is undecidable in ZFC. A subalgebra B of a Boolean algebra A is called regular whenever for every X ⊆ B, supB X = 1 implies supA X = 1; see e.g. Heindorf and Sha...

متن کامل

Extended Fuzzy $BCK$-subalgebras

This  paper extends the notion of fuzzy $BCK$-subalgebras to fuzzy hyper $BCK$-subalgebras and defines an extended fuzzy $BCK$-subalgebras. This study  considers  a type of fuzzy hyper  $BCK$-ideals  in this  hyperstructure  and  describes   the  relationship  between hyper  $BCK$-ideals and  fuzzy hyper  $BCK$-ideals.  In fact, it tries to introduce   a  strongly  regular  relation  on hyper $...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2001